Let I=∫π0x1+sinxdx ...(1)
Substituting x→π−x
⇒I=∫π0π−x1+sin(π−x)dx
[∵∫baf(x)dx=∫baf(a+b−x)dx]
⇒I=∫π0π−x1+sinxdx ....(2)
Adding equations (1) and (2), we get
⇒2I=∫π0π1+sinxdx
⇒I=π2∫π011+sinxdx
⇒I=π2∫π011+sinx×1−sinx1−sinxdx
⇒I=π2∫π01−sinx1−sin2xdx=π2∫π01−sinxcos2xdx
⇒I=π2∫π0[1cos2x−sinxcos2x]dx
⇒I=π2∫π0[sec2x−tanxsecx]dx
⇒I=π2[tanx−secx]π0
⇒I=π2[(tanπ−secπ)−(tan0−sec0)]
⇒I=π2[(0+1)−(0−1)]=π
Hence, the value of required integration is π