wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate 121|xsinπx|dx

Open in App
Solution

We have,

I=121|xsinπx|dx

Using ILATE and we get,

x.ydx=xydx(dxdxydx)dx+C

I=x121sinπxdx121⎜ ⎜121(dxdxsinπx)dx⎟ ⎟dx

I=x[cosπxπ]112121(cosπx)πdx+C

I=x[cosπxπ]112+[(sinπx)π2]112+C

I=xπ[cosπx]112+1π2[sinπx]112+C

I=(121)π[cosπ2cos(π)]+1π2[sinπ2sin(π)]+C

I=12π[01]+1π2[1+0]cos(θ)=cosθ,sin(θ)=sinθ

I=12π+1π2

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon