We have,
I=∫12−1|xsinπx|dx
Using ILATE and we get,
∫x.ydx=x∫ydx−∫(∫dxdxydx)dx+C
I=x∫12−1sinπxdx−∫12−1⎛⎜ ⎜⎝∫12−1(dxdxsinπx)dx⎞⎟ ⎟⎠dx
I=x[cosπxπ]−112−∫12−1(cosπx)πdx+C
I=x[cosπxπ]−112+[(sinπx)π2]−112+C
I=xπ[cosπx]−112+1π2[sinπx]−112+C
I=(12−1)π[cosπ2−cos(−π)]+1π2[sinπ2−sin(−π)]+C
I=−12π[0−1]+1π2[1+0]∴cos(−θ)=cosθ,sin(−θ)=−sinθ
I=12π+1π2
Hence, this is the answer.