wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate
21|x3x|dx

Open in App
Solution

21|x3x|dx

We know that

x3x0

x(x21)0

xϵ[1,0][1,2]x3x0

x(x21)0

xϵ[,1][0,1]

Now,

I=21|x3x|dx

I=0=1|x3x|dx+10|x3x|dx+21|x3x|dx

I=01(x3x)dx+10(x3x)dx+21(x3x)dx

[baf(x)dx=caf(x)dx+bcf(x)dx]

I=[x44x22]01[x44x22]10+[x44x22]21

I=[0((1)44(1)22)][(144122)0]+[(244222)(1412)]

I=[0(14)][140]+[(42)(14)]

I=14+14+2+14

I=2+34=114

Hence 21|x3x|dx=114

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon