∫2−1|x3−x|dx
We know that
x3−x≥0
⇒x(x2−1)≥0
⇒xϵ[−1,0]∪[1,2]x3−x≤0
⇒x(x2−1)≤0
⇒xϵ[−∞,−1]∪[0,1]
Now,
I=∫2−1|x3−x|dx
⇒I=∫0=1|x3−x|dx+∫10|x3−x|dx+∫21|x3−x|dx
⇒I=∫0−1(x3−x)dx+∫10−(x3−x)dx+∫21(x3−x)dx
[∵∫baf(x)dx=∫caf(x)dx+∫bcf(x)dx]
⇒I=[x44−x22]0−1−[x44−x22]10+[x44−x22]21
⇒I=[0−((−1)44−(−1)22)]−[(144−122)−0]+[(244−222)−(14−12)]
⇒I=[0−(−14)]−[−14−0]+[(4−2)−(−14)]
⇒I=14+14+2+14
⇒I=2+34=114
Hence ∫2−1|x3−x|dx=114