Solution :- given
⇒−5∫3|x+2|dx
for −5≤x≤−2:(−x−2)
−2≤x≤3:(x+2)
∴ Integration can be written as
=−5∫−2(−x−2)dx+−2∫3(x+2)dx
=−2−5[−x22−2x]+ 3−2[x22+2x]
=[(−(−2)2+2×2)−((−5)22)+2×5]+[(322+2.3)−((−2)22+2.(−2))]
=[(−42+4)−(−252+10)]+[(92+6)−(42−4)]
=[(−2+4)−(−25+202)]+[(9+122)−(2−4)]
=[2+52]+[212+2]
=92+252
=342
=17 Ans