Let
t=tanx2⇒dt=12sec2x2dx⇒2dt=sec2x2dx
⇒2dt=(1+t2)dx
⇒dx=2dt1+t2
Now, cotx=1−t21+t2 and sinx=2t1+t2
∫dx4cosx+3sinx
=∫2dt1+t24(1−t21+t2)+3(2t1+t2)
=∫2dt4(1−t2)+6t
=∫dt2−2t2+3t
=∫−dt2t2−3t−2
=∫−dt2(t2−32t−1)
=−12∫dtt2−32t−1
=−12∫dt(t2−2×t×34+(34)2)−(34)2−1
=−12∫dt(t−34)2−2516
=−12×12×54ln⎛⎜
⎜
⎜⎝t−3454⎞⎟
⎟
⎟⎠
=−15ln4t−35 on simplification
=−15ln(4tanx2−35)+c where t=tanx2 and c is the constant of integration.