wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate 2cosx3sinx4cosx+5sinxdx

Open in App
Solution

Put 2sinx3sinx=(Ad(4cosx+5sinx)dx)+B(cosx+5sinx)dx2cosx3sinx=A(4sinx+5cosx)+B(4cosx+5sinx)2cosx3sinx=sinx(4A+5B)+cosx(5A+4B)
Comparing the co-efficient at sinx and cosx on both sides we have
4A+5B=3(i)5A+4B=2(ii)
On solving (i) and (ii) we have
20A+25B=15
20A+16B=8–––––––––––––––
41B=7
B=741
Put B=741 in equation (i)
we get,
4A+5B=34A+5(741)=34A3541=34A=3+35414A=123+35414A=8841A=2241
Now,
I=2cosx3sin4cosx+5sinxdxI=A(4sinx+5cosx)+B(4cosx+5sinx)4cosx+5sinxdxI=2241(4sinx+5cosx)(4cosx+5sinx)+741(4cosx+5sinx)(4cosx+5sinx)dx
Hence we get,
I=2241log|4cosx+5sinx|741x+c


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon