Wehave∫3cosx+2sinx+2cosx+3dxHere,(3cosx+2)=λ(sinx+2cosx+3)+μ(cosx−2sinx)+u(3cosx+2)=(2λ+u)cosx+(λ−2u)sinx+(3λ+u)∴2λ+u=3,λ−2μ=0,3λ+u=2so,λ=65μ=35u=−85I=∫65(sinx+2cosx+3)(sinx+2cosx+3)dx+35∫(cosx−2sinx)dx(sinx+2cosx+3)−85∫dxsinx+2cosx+3=65x+35log(sinx+2cosx+3)−85tan−1⎛⎜
⎜⎝tanx2+12⎞⎟
⎟⎠+C