∫3x−1√x2+9dx
=∫3x√x2+9dx−∫1√x2+9dx
=32∫2x√x2+9dx−∫1√x2+9dx
=32∫2x√x2+9dx−log∣x+√x2+9∣
[∴∫1√x2+a2dx=log∣x+√x2+a2∣+c]
Substituting x2+9=t⇒2xdx=dt,
⇒32∫2x√x2+9dx−log∣x+√x2+9∣
=32∫1√tdt−log∣x+√x2+9∣
=32∫t−12dt−log∣x+√x2+9∣
=32⎛⎜
⎜
⎜⎝t−12+1−12+1⎞⎟
⎟
⎟⎠−log∣x+√x2+9∣+c
=32⎛⎜
⎜
⎜⎝t1212⎞⎟
⎟
⎟⎠−log∣x+√x2+9∣+c
=3t12−log∣x+√x2+9∣+c
=3√x2+9−log∣x+√x2+9∣+c
[∵x2+9=t]
Where c is constant of integration
Hence, the required integration is
3√x2+9−log∣x+√x2+9∣+c