∫3x+3√x2+5x+6dx
Let t2=x2+5x+6
⇒2tdt=(2x+5)dx
Substituting,
=32∫2x+5−3√x2+5x+6dx
=32∫2x+5√x2+5x+6dx−92∫1√x2+5x+6dx
=32∫2tdtt−92∫1√x2.2.12.5.x+254−254+6dx
=32∫2tdtt−92∫1√(x+52)2−(12)2dx
=32×2∫dt−92∫1√(x+52)2−(1/2)2dx
=3∫dt−92∫1√(x+52)2−(1/2)2dx
=3√x2+5x+6−92log⎛⎝x+52+√(x+52)2−14⎞⎠+C