We have,
∫dx√2x2−2x+3
⇒∫dx√2(x2−x+32)
⇒1√2∫dx√(x2−x+32)
On adding and subtracting denominator (12)2=14
Then,
⇒1√2∫dx√(x2−x+14−14+32)
⇒1√2∫dx√(x2−x+14−54)
⇒1√2∫dx ⎷(x−12)2−(√52)2
Using formula
∫dx√x2−a2=log∣∣x+√x2−a2∣∣
∫dx√2x2−2x+3=log∣∣ ∣ ∣∣(x−12)+ ⎷(x−12)2−(√52)2∣∣ ∣ ∣∣
=log∣∣∣(x−12)+(x2−x+32)∣∣∣+C
Hence, this is the answer.