∫x√x+1dx
Substituting x=t2,
dx=2tdt
=∫t2t+1⋅2tdt
=2∫t3t+1dt
=2∫t3+1−1t+1dt
=2∫[t3+1t+1−1t+1]dt
=2∫[(t+1)(t2+t+1)(t+1)−1t+1]dt
=2∫[(t2+t+1)−1t+1]dt
=2[t33+t22+t−log∣t+1∣]+c
=2[x√x3+x2+√x−log∣√x+1∣]+c
[∵x=t2]
Where c is constant of integration
Hence, the required integration is
2[x√x3+x2+√x−log∣√x+1∣]+c