wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate :e3xcos3xdx

Open in App
Solution

Given : e3xcos3xdx
We know, cos3x=4cos3x3cosx

e3xcos3xdx
=e3x[cos3x+3cosx4]dx
=14e3xcos3xdx+34e3xcosxdx

Now, finding the integration of
I=eaxcosbxdx

Using integration by parts, we get
I=cosbxeaxdx[ddx(cosbx)eaxdx]dx

I=cosbx(eaxa)+ba(sinbxeax)dx

Using integration by parts, we get

I=1aeaxcosbx+ba[sinbxeaxdx[ddx(sinbx)eaxdx]dx]

I=1aeaxcosbx+ba[sinbx(eaxa)ba(cosbxeax)dx]

I=1aeaxcosbx+ba2eaxsinbxb2a2(cosbxeax)dx

I=1a2eax(acosbx+bsinbx)b2a2I

(1+b2a2)I=1a2eax(acosbx+bsinbx)

eaxcosbxdx

=1a2+b2eax(acosbx+bsinbx)

Now, equation (1) becomes
14e3xcos3xdx+34e3xcosxdx

=14[1(3)2+(3)2e3x(3cos3x+3sin3x)]+34[1(3)2+(1)2e3x(3cosx+sinx)]+c

=34×18e3x(sin3xcos3x)+34×10e3x(sinx3cosx)+c

=e3x24(sin3xcos3x)+3e3x40(sinx3cosx)+c
where, c is constant of integration

Hence, the integration is
e3x24(sin3xcos3x)+3e3x40(sinx3cosx)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon