Given : ∫e−3xcos3xdx
We know, cos3x=4cos3x−3cosx
∫e−3xcos3xdx
=∫e−3x[cos3x+3cosx4]dx
=14∫e−3xcos3xdx+34∫e−3xcosxdx
Now, finding the integration of
I=∫eaxcosbxdx
Using integration by parts, we get
⇒I=cosbx∫eaxdx−∫[ddx(cosbx)∫eaxdx]dx
⇒I=cosbx(eaxa)+ba∫(sinbx⋅eax)dx
Using integration by parts, we get
⇒I=1aeaxcosbx+ba[sinbx∫eaxdx−∫[ddx(sinbx)∫eaxdx]dx]
⇒I=1aeaxcosbx+ba[sinbx(eaxa)−ba∫(cosbx⋅eax)dx]
⇒I=1aeaxcosbx+ba2eaxsinbx−b2a2∫(cosbx⋅eax)dx
⇒I=1a2eax(acosbx+bsinbx)−b2a2I
⇒(1+b2a2)I=1a2eax(acosbx+bsinbx)
∴∫eaxcosbxdx
=1a2+b2eax(acosbx+bsinbx)
Now, equation (1) becomes
14∫e−3xcos3xdx+34∫e−3xcosxdx
=14[1(−3)2+(3)2e−3x(−3cos3x+3sin3x)]+34[1(−3)2+(1)2e−3x(−3cosx+sinx)]+c
=34×18e−3x(sin3x−cos3x)+34×10e−3x(sinx−3cosx)+c
=e−3x24(sin3x−cos3x)+3e−3x40(sinx−3cosx)+c
where, c is constant of integration
Hence, the integration is
e−3x24(sin3x−cos3x)+3e−3x40(sinx−3cosx)