Let I = ∫dxsin x−sin 2x ⇒I=∫dxsin x(1−2 cos x)⇒I=∫sin xdx(1+cos x)(1−cos x)(1−2 cos x)Put cos x=t⇒sin x dx=−dt ∴I=∫−dt(1+t)(1−t)(1−2t)Consider 1(1+t)(1−t)(1−2t)=A1+t+B1−t+C1−2t⇒1=A(1−t)(1−2t)+B(1+t)(1−2t)+C(1−t)(1+t)On equating the coefficients of like terms, we get:A=16, B=−12,C=43So,I=−16∫dt(1+t)+12∫dt(1−t)−43∫dt(1−2t)⇒I=−16log|1+t|−12log|1−t|+23log|1−2t|+C∴I=−16log|1+cos x|−12log|1−cos x|+23log|1−2 cos x|+C.