wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: t4dt1t2

Open in App
Solution

t4dt1t2
Say t=sinθdt=cosθdθ
=sin4θ1sin2θcosθdθ
=sin4θcos2θcosθdθ=sin4θcosθcosθdθ
=sin4θdθ
=14(2sin2θ)2dθ=14(1cos2θ)2dθ
=14[(1+cos22θ2cos2θ)dθ]
=14[dθ+cos22θdθ2cos2θdθ]
=14[dθ+122cos22θdθ2cos2θdθ]
=14[dθ+12(1+cos4θ)dθ2cos2θdθ]
=!4[dθ+12dθ+12cos4θdθ2cos2θdθ]
=14[θ+θ2+sin4θ8sin2θ]
=3θ8+sin4θ32sin2θ4
=3sin1t8+4sinθcosθ(12sin2θ)322sinθcosθ4
=38sin1t+18t1t2(12+2t2)12t1t2
=38sin1t+18t1t2(2t21)12t1t2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon