∫t4dt√1−t2
Say t=sinθ⇒dt=cosθdθ
=∫sin4θ√1−sin2θcosθdθ
=∫sin4θ√cos2θ⋅cosθdθ=∫sin4θcosθcosθdθ
=∫sin4θdθ
=14∫(2sin2θ)2dθ=14∫(1−cos2θ)2dθ
=14[∫(1+cos22θ−2cos2θ)dθ]
=14[∫dθ+∫cos22θdθ−2∫cos2θdθ]
=14[∫dθ+12∫2cos22θdθ−2∫cos2θdθ]
=14[∫dθ+12(1+cos4θ)dθ−2∫cos2θdθ]
=!4[∫dθ+12∫dθ+12cos4θdθ−2∫cos2θdθ]
=14[θ+θ2+sin4θ8−sin2θ]
=3θ8+sin4θ32−sin2θ4
=3sin−1t8+4sinθ⋅cosθ⋅(1−2sin2θ)32−2sinθ⋅cosθ4
=38sin−1t+18t√1−t2(1−2+2t2)−12t√1−t2
=38sin−1t+18t√1−t2(2t2−1)−12t√1−t2