∫ x2x4+x2−2dx
For Partial fraction, Put x2=t
⇒tt2+t−2=t(t+2)(t−1)
Let t(t+2)(t−1)=At+2+Bt−1 ... (i)
⇒t=A(t−1)+B(t+2)
Put t=−2
⇒−2=A(−2−1)
⇒−3A=−2⇒A=23
Put t=1
⇒1=B(1+2)
⇒3B=1
⇒B=13
From (i), we have
t(t+2)(t−1)=23t+2+13t−1
∴ ∫ x2x4+x2−2dx=23∫ 1x2+(√2)2dx+13∫ 1x2−12dx
=23×1√2tan−1(x√2)+13×12log∣∣x−1x+1∣∣+c
=√23tan−1(x√2)+16log∣∣x−1x+1∣∣+c