wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate (32x)2+xx2dx.

Open in App
Solution

We have,

I=(32x)2+xx2dx

=(2+12x)2+xx2dx

=(12x)2+xx2dx+22+xx2dx

I=I1+I2

Let,

I1=(12x)2+xx2dx

I2=22+xx2dx

First,

I1=(12x)2+xx2dx

Let,

2+xx2=t

ddx(2+xx2)=dtdx

(0+12x)=dtdx

(12x)dx=dt

I1=tdt

=t12dt

=t12+112+1+C

=t3232+C

=23t32+C

=23(2+xx2)32+C


I2=22+xx2dx

=22(x2x)dx

=22(x2x+1414)dx

=22(x12)2+14dx

=294(x12)2dx

=2(32)2(x12)2dx

We know that,

a2x2dx=xa2x22+a22sin1(xa)+C

Then,

I2=2(32)2(x12)2dx

I2=2⎢ ⎢ ⎢ ⎢ ⎢ ⎢(x12)2(32)2(x12)22+(32)22sin1⎜ ⎜ ⎜ ⎜(x12)(dfrac32)⎟ ⎟ ⎟ ⎟⎥ ⎥ ⎥ ⎥ ⎥ ⎥+C

Now,

I=I1+I2

I=23(2+xx2)32+2⎢ ⎢ ⎢ ⎢ ⎢ ⎢(x12)2(32)2(x12)22+(32)22sin1⎜ ⎜ ⎜ ⎜(x12)(32)⎟ ⎟ ⎟ ⎟⎥ ⎥ ⎥ ⎥ ⎥ ⎥+C

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon