We have,
I=∫(3−2x)√2+x−x2dx
=∫(2+1−2x)√2+x−x2dx
=∫(1−2x)√2+x−x2dx+2∫√2+x−x2dx
I=I1+I2
Let,
I1=∫(1−2x)√2+x−x2dx
I2=2∫√2+x−x2dx
First,
I1=∫(1−2x)√2+x−x2dx
Let,
2+x−x2=t
ddx(2+x−x2)=dtdx
(0+1−2x)=dtdx
(1−2x)dx=dt
I1=∫√tdt
=∫t12dt
=t12+112+1+C
=t3232+C
=23t32+C
=23(2+x−x2)32+C
I2=2√2+x−x2dx
=2√2−(x2−x)dx
=2√2−(x2−x+14−14)dx
=2√2−(x−12)2+14dx
=2√94−(x−12)2dx
=2√(32)2−(x−12)2dx
We know that,
√a2−x2dx=x√a2−x22+a22sin−1(xa)+C
Then,
I2=2√(32)2−(x−12)2dx
I2=2⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣(x−12)2√(32)2−(x−12)22+(32)22sin−1⎛⎜ ⎜ ⎜ ⎜⎝(x−12)(dfrac32)⎞⎟ ⎟ ⎟ ⎟⎠⎤⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦+C
Now,
I=I1+I2
I=23(2+x−x2)32+2⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣(x−12)2√(32)2−(x−12)22+(32)22sin−1⎛⎜ ⎜ ⎜ ⎜⎝(x−12)(32)⎞⎟ ⎟ ⎟ ⎟⎠⎤⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦+C
Hence, this is the answer.