∫√1+sinx dx
=∫√sin2x2+cos2x2+2sinx2cosx2 dx
⎡⎣∵sin2x+cos2x=1sinx=2sinx2cosx2⎤⎦
=∫√(sinx2+cosx2)2 dx
=∫∣sinx2+cosx2∣ dx
=∫(sinx2+cosx2) dx
[∵x∈(0,π)⇒x2∈(0,π2)]
=112[−cosx2+sinx2]+c
=−2cosx2+2sinx2+c
Where c is constant of integration
Hence, the required integration is
−2cosx2+2sinx2+c