Evaluate::∫sin6x+cos6xsin2xcos2x
To evaluate: ∫sin6x+cos6xsin2xcos2xdx
LetI =∫sin6x+cos6xsin2xcos2xdx
=∫(sin2)3x+(cos2x)3sin2xcos2xdx
=∫(sin2)x+(cos2x)[(sin2x)2+(cos2x)2-sin2xcos2x]sin2xcos2xdx [Formula used: a3+b3=(a+b)(a2+b2-ab)]
=∫[(sinx)4+(cosx)4-sin2xcos2x]sin2xcos2xdx [Identity used: (sin2)x+(cos2)x=1]
= ∫[(sinx)4+(cosx)4+2sin2xcos2x-3sin2xcos2x]sin2xcos2xdx
= ∫[(sinx2+cosx2)2-3sin2xcos2x]sin2xcos2xdx
=∫1-3sin2xcos2x]sin2xcos2xdx [Identity used: (sin2)x+(cos2)x=1]
= ∫1sin2xcos2x-3sin2xcos2xdx
=∫sin2x+cos2xsin2xcos2x-3sin2xcos2xdx [Identity used: (sin2)x+(cos2)x=1]
=∫sin2xsin2xcos2x+cos2xsin2xcos2x-3sin2xcos2xdx
=∫sin2xsin2xcos2xdx+∫cos2xsin2xcos2xdx-∫3sin2xcos2xdx
=∫1cos2xdx+∫1sin2xdx-∫3sin2xcos2xdx
=∫sec2xdx+∫cosec2xdx-∫3sin2xcos2xdx [Identity used: 1cosx=secx and 1sinx=cosecx]
=∫sec2xdx+∫cosec2xdx-∫3sin2xcos2xdx
I=tanx−cotx−3x+C
Hence I=tanx−cotx−3x+C