Evaluate tan(x+π4)
To evaluate: tan(x+π4)
We know that the radian value of π=1800
So, π4=18004=450
⇒ tanπ4 =tan450=1
We know that tan(A+B)=tanA+tanB1-tanAtanB
⇒ tan(x+π4)=tanx+tanπ41-tanxtanπ4
=tanx+tan4501-tanxtan450
=tanx+11-tanx×1
=1+tanx1-tanx
Thus, the required value of tan(x+π4)=1+tanx1-tanx