Evaluate the following :
(i) ∑11n=1(2+3n)
(ii) ∑nk=1(2k+3k−1)
(iii) ∑10n=24n
(i) S11=∑11n=1(2+3n)⇒S11=(2+31)+(2+32)+(2+33)+...+(2+311)⇒S11=2×11+31+32+33+....+311=22+3(311−1)(3−1)=22+3(311−1)2=44+3(177147−1)2=44+3(177146)2=265741
So,
∑11n=1(2+3n)=265741(ii) Sn=∑nk=1(2k+3k−1)=(2+30)+(22+3)+(23+32)+....+(2n+3n−1)=(2+22+23+...+2n)+(30+31+32+...+3n−1)=(sn+sm)Sn⇒a=2, n=n, r=222=2Sn=a(rn−1)r−1=2(2n−1)(2−1)=2(2n−1)Also,Sm=Sn−1a=1, r=3, n=n−1Sn−1=1(3n−1−1)3−1=12(3n−1)∴∑nk=1(2k+3k−1)=2(2n−1)+12(3n−1)=12[2n+2+3n−4−1]=12[2n+2+3n−5]
(iii) ∑10n=24n=42+43+44+...+410a=42, r=434=4, n=9S10=a(r9−1)1−r=42(49−1)4−1=13[411−16]=163[49−1]