We start by integrating the functionsin2(x)
so ∫sin2(x)dx=∫12(1−cos(2x)=12(x−sin(2x)2)+C
so then you do the original
integral by party.you take:
u=x
u=1
v=sin2(x)=12(x−sin(2x)2)
we know that ∫u.v=uv−∫uv
∫sin2(x)dx=x2(x−sin(2x)2−∫12(x−sin(2x)2)=x2(x−sin(2x)2)−12(x2+cos(2x)4)
Which then can be simplified to
x24−xsin(2x)4−cos(2x)8