Given : limx→0(cosec x−cotx)
limx→0( cosec x−cotx)
Substituting x=0 in the given limit,
=cosec 0−cot0
=∞−∞
Since it is in ∞−∞ form.
We need to simplify it,
limx→0(cosecx−cotx)
Let L=limx→0(1sinx−cosxsinx)
⇒L=1−cosxsinx
Substituting x=0
⇒L=1−cos0sin0
⇒L=1−10
⇒L=00
It is form 00
Hence,
⇒L=limx→01−cosxsinx
Multiplying and dividing by (1+cosx)
L=limx→01−cosxsinx×1+cosx1+cosx
⇒L=limx→012−cos2xsinx(1+cosx)
⇒L=limx→01−cos2xsinx(1+cosx)
⇒L=limx→0sin2xsinx(1+cosx)
⇒L=limx→0sinx1+cosx
Substituting x=0
⇒L=sin0(1+cos0)
⇒L=01+1
⇒L=02
⇒L=0