wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate the given limit :
limx0(cosec xcotx)

Open in App
Solution

Given : limx0(cosec xcotx)
limx0( cosec xcotx)
Substituting x=0 in the given limit,
=cosec 0cot0
=
Since it is in form.

We need to simplify it,
limx0(cosecxcotx)
Let L=limx0(1sinxcosxsinx)
L=1cosxsinx
Substituting x=0
L=1cos0sin0
L=110
L=00
It is form 00
Hence,
L=limx01cosxsinx
Multiplying and dividing by (1+cosx)
L=limx01cosxsinx×1+cosx1+cosx
L=limx012cos2xsinx(1+cosx)
L=limx01cos2xsinx(1+cosx)
L=limx0sin2xsinx(1+cosx)
L=limx0sinx1+cosx
Substituting x=0
L=sin0(1+cos0)
L=01+1
L=02
L=0


flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon