We have,
limx→0x3cotx1−cosx
It becomes 0/0 form.
⇒limx→0x3tanx(2sin2x2)
[∵1−cosx=2sin2x2,cotx=1tanx]
Dividing numerator and denominator by x3, we get
=limx→01tanxx×2sinx2x2×sinx2x2×14
=11×2×1×14 [∵limx→0sinxx=1,limx→0tanxx=1]
=2
Therefore,
limx→0x3cotx1−cosx=2