We have,
limx→11−x2sin2πx
Put x=1−h,h→0
=limh→01−(1−h)2sin2π(1−h)
=limh→01−(1+h2−2h)sin(2π−2πh)
=limh→0−(h2−2h)sin(2π−2πh)
=limh→0−h(h−2)−sin(2πh) [∵sin(2π−θ)=−sinθ]
=limh→0(h−2)sin(2πh)2πh×2π
=(0−2)1×2π [∵limx→0sinxx=1]
=−1π
Therefore,
limx→11−x2sin2πx=−1π