x7−2x5+1
=(x−1)(x6+x5−x4−x3−x2−x−1)
Also, denominator
⇒x3−3x2+2=(x−1)(x2−2x−2)
∴limx→1x7−2x5+1x3−3x2+2
=limx→1(x−1)(x6+x5−x4−x3−x2−x−1)(x−1)(x2−2x−2)
=limx→1(x6+x5−x4−x3−x2−x−1)(x2−2x−2)
=(16+15−14−13−12−1−1)(12−2(1)−2)
=−3−3=1
∴limx→1x7−2x5+1x3−3x2+2=1