Evaluate ∫ex1+e2xdx
Given: ∫ex1+e2xdxLet ex=tDifferentiating with respect to t, we get ⇒exdx=dtSubstitute ex=t and exdx=dt, we get ⇒∫dt12+t2=tan−1t∴∫ex1+e2x=tan−1(ex)