Expand :
(i) (2a+b)2
(ii) (a−2b)2
(iii) (a+12a)2
(iv) (2a−1a)2
(v) (a+b−c)2
(vi) (a−b+c)2
(vii) (3x+13x)2
(viii) (2x−12x)2
(i) (2a+b)2=(2a)2+(b)2+2×2a×b[(a+b)2=a2+b2+2ab]
=4a2+b2+4ab
(ii) (a−2b)2=(a)2+(2b)2−2×a×2b[(a−b)2=a2+b2−2ab]
=a2+4b2−4ab.
(iii) (a+12a)2=(a)2+(12a)2+2×a×12a
=a2+14a2+2a2a
=a2+14a2+1
(iv) (2a−1a)2=(2a)2+(1a)2−2×2a×1a
=4a2+1a2−4.
(v) (a+b−c)2=(a)2+(b)2+(−c)2+2×a×b+2×b×(−c)+2×(−c)×(a)=a2+b2+c2+2ab−2bc−2ca
Note : \((a+ b + c)^2 = a^2 +b^2 + c^2 + \2ab - 2bc - 2ca)
(vi) (a−b+c)2=(a)2+(−b)2+(c)2+2×a×−b+2(−b)(c)+2×c×a
=a2+b2+c2−2ab−2bc+2ca.
(vii) (3x+13x)2=(3x)2+(13x)2+2×3x×13x
=9x2+19x2+2.
(viii) (2x−12x)2=(2x)2+(12x)2−2×2x×12x
=4x2+14x2−2.