Equation of the circle =(x−h)2+(y−k)2=r2 Where centre (h,k) and radius ‘r’
Every point p on the circle can be represented asx=h+rcosθy=k+rsinθ. Where θ in the parameter. (x−h)2+(y−k)2=r2 (h+rcosθ−h)2+(k+rsinθ−k)2=r2 r2cos2θ+r2sin2θ+r2 ÷r2 cos2θ+sin2θ=1 1 = 1 ⇒x=h+rcosθ and y=k+rsinθ0≤θ≤2π in the parametric equation of circle where θ in the parameter.