wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Express sin5A in terms of cosA.

Open in App
Solution

Dear student
sin5A=sin3A+2A=Sin3A cos2A+cos3A sin2A=3sinA-4sin3A2cos2A-1+4cos3A-3cosA×2sonA cosA=-3sinA+4sin3A+6sinA cos2A-8sin3Acos2A+8sinAcos4A-6sinAcos2A=8sinAcos4A-8sin3Acos2A-2sinA+4sin3A=5sinAcos4A-10sin3Acos2A-3sinA+3sinAcos4A+4sin3A+2sin3Acos2A=5sinAcos4A-10sin3Acos2A-3sinA1-cos4A+2sin3A2+cos2A=5sinAcos4A-10sin3Acos2A-3sinA1-cos2A1+cos2A+2sin3A2+cos2A=5sinAcos4A-10sin3Acos2A-3sin3A1+cos2A+2sin3A2+cos2A=5sinAcos4A-10sin3Acos2A-sin3A31+cos2A+2sin3A2+cos2A=5sinAcos4A-10sin3Acos2A-sin3A3+3cos2A-4-2cos2A=5sinAcos4A-10sin3Acos2A-sin3Acos2A-1=5sinAcos4A-10sin3Acos2A-sin3A-sin2A=5sinAcos4A-10sin3Acos2A+sin5AYou can leave this here because it ca't be fully expressed in terms of CosA
Regards

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon