(i)(8+7i)(8−7i)=82−(7i)2=64−49i2
=64−49×−1=64+49=113=113+0i.(ii)(5−6i)2=52−2(5)(6i)+(6i)2=25−60i+36i2=25−60i−36=−11−60i.(iii)(2+3i)(3+7i)=6+14i9i+21i2=6+23i−21=−15+23i.
(iv)(−2−13i)3=(−1)3(2+13i)3=−(23+3×22×13i+3×2×(13i)2+(13i)3)
=−(8+4i+23i2+127i3)=−(8+4i+23(−1)+127(−i))=−(8−23+4i−127i)=−(223+10727i)=−223−10727i.
(v)(1−l)4=[(1−1)2]2=(1−2i+i2)2=(1−2i−1)2(−2i)2=4i2=4×−1=−4.
(vi)(√3+5i)(√3−5i)2+(−4+5i)2
=[(√3+5i)(√3−5i)](√3−5i)+(−4+5i)2=(3−25i62)(√3−5i)+(16−40i+25i2)=(3−25×−1)(√3−5i)+(16−40i−25)=28(√3−5i)−9−40i=28√3−140i−9−40i=(28√3−9)−180i.