The correct option is D 5050
f(x)=x2−2ax+a(a+1)
y=f(x)=(x−a)2+a
As x∈[a,∞), then
y≥a(x−a)2=y−a⇒x=a+√y−a∴f−1(x)=a+√x−a
Now, f(x)=f−1(x)
⇒(x−a)2+a=a+√x−a⇒(x−a)2=√x−a⇒(x−a)4=(x−a)
⇒x=a or (x−a)3=1
⇒x=a or a+1
If a=5049, then a+1=5050
If a+1=5049, then a=5048
∴ Other possible solutions are 5050 or 5048.