The correct option is A bg(a)−ag(b)b−a
Given,g(x)=(c1−x)(c2−x)(c3−x).
g(a)=(c1−a)(c2−a)(c3−a) ....(i)
g(b)=(c1−b)(c2−b)(c3−b) ....(ii)
f(x)=∣∣
∣∣x+c1x+ax+ax+bx+c2x+ax+bx+bx+c3∣∣
∣∣
Clearly,f(x) is linear in x.
Let f(x)=αx+β
f(−a)=−aα+β
and f(−b)=−bα+β
⇒β=bf(−a)−af(−b)b−a ....(iii)
Now, f(−a)=∣∣
∣∣c1−a00b−ac2−a0b−ab−ac3−a∣∣
∣∣
⇒f(−a)=(c1−a)(c2−a)(c3−a)
⇒f(−a)=g(a) (using (i)) .....(iv)
f(−b)=∣∣
∣∣c1−ba−ba−b0c2−ba−b00c3−a∣∣
∣∣
⇒f(−b)=(c1−b)(c2−b)(c3−b)
⇒f(−b)=g(b) .....(v)
Put this value in (iii), we get
β=bg(a)−ag(b)b−a