The correct option is C a+b
Given f(x)=log(1+ax)−log(1−bx)x for x≠0
Since, f(x) is continuous at x=0
LHL=RHL=f(0)
Now, limx→0f(x)
=limx→0log(1+ax)−log(1−bx)x
=limx→0log(1+ax)x−limx→0log(1−bx)x
=limx→0alog(1+ax)ax−limx→0(−b)log(1−bx)−bx
=a+b (∵limx→0log(1+x)x=1)
⇒f(0)=a+b