f(x) = (x−b)(x−c)(x−a), where a,b,c are distinct real numbers, will assume all real values provided :
a lies between b and c
y = (x2−(b+c)x+bc)x−a assume all real values.
⇒ x2−(b+c+y)x+bc+ay=0.xϵ R for ∀ y ϵ R
⇒ D = (b+c+y)2−4bc−4ay≥0 ∀ y ϵ R
⇒ y2+(2b+2c−4a)y+(b−c)2≥0 ∀ y ϵ R
⇒ 4 (b+c−2a)2−(b−c)2≤0 ∀ y ϵ R
⇒ 4 (b-a) ( c-a) ≤ 0
⇒ ( a - b)(a - c) < 0 [ ∵ a,b,c are distinct ]
⇒ b < a < c or c < a < b.
⇒ a lies between b and c .