f(x)={1+x,if x≤25−x,if x>2
We have f(x)={1+x,if x≤25−xif x>2
For differentiability at x=2
Lf′(2)=limx→2−f(x)−f(2)x−2=limx→2−(1+x)−(1+2)x−2=limh→0(1+2−h)−32−h−2=limh→0−h−h=1
Rf′(2)=limx→2+f(x)−f(2)x−2=limx→2+(5−x)−32+h−2=limh→05−(2+h)−32+h−2=limh→05−2−h−3hlimh→0−h+h=−1∵ Lf′(x)≠Rf′(2)
So, f(x) is not differentiable at x=2.