Factorise :
8x6+95x3+1
Using the identity,
a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)
Now,
8x6+95x3+1
=8x6+125x3+1−30x3
=(2x2)3+(5x)3+(1)3−3(2x2)(5x)(1)
Here,
a=2x2
b=5x
c=1,
Therefore,
∴(2x2)3+(5x)3+(1)3−3(2x2)(5x)(1)
=(2x2+5x+1)((2x)2+(5x)2+12−2x2(5x)−5x(1)−((2x2)(1)
=(2x2+5x+1)(4x4+25x2+1−10x3−5x−2x2
=(2x2+5x+1)(4x4−10x3+23x3−5x+1)
Hence, Option B is correct.