Factorise:
(a2+b2−4c2)2−4a2b2
(a2+b2−4c2)2−4a2b2=(a2+b2−(2c)2)2−(2ab)2 , using identity (a2−b2)=(a+b)(a−b)=(a2+b2−(2c)2−2ab)(a2+b2−(2c)2+2ab)=(a2+b2−2ab−(2c)2)(a2+b2+2ab−(2c)2)=((a−b)2−(2c)2)((a+b)2−(2c)2)=[(a−b−2c)(a−b+2c)][(a+b−2c)(a+b+2c)]=(a−b−2c)(a−b+2c)(a+b−2c)(a+b+2c)