Factorise a+2b+a3+8b3
(a+2b)(a2−2ab+b2−1)
(a+2b)(a2−2ab+b2+1)
(a+2b)(a2−2ab+b2)
(a+2b)(a2−2ab+b2+2)
Given a+2b+a3+8b3
→a+2b+(a)3+(2b)3
→(a+2b)+(a+2b)(a2−2ab+b2) (Using(a3+b3) Taking a+2b common ,we have →(a+2b)(a2−2ab+b2+1)
Which of the following is correct? a) (a−b)2=a2+2ab−b2 b) (a−b)2=a2−2ab+b2 c) (a−b)2=a2−b2 d) (a+b)2=a2+2ab−b2