Factorize the following: 8a3+b3+12a2b+6ab2
The expression 8a3+b3+12a2b+6ab2 can be written as 2a3+b3+32a2b+32ab2 ….[1]
We know the Algebraic Identity a+b3=a3+b3+3aba+b
=a3+b3+3a2b+3ab2 …[2]
By comparing expressions [1] and [2], we can say,
8a3+b3+12a2b+6ab2 =2a3+b3+32a2b+32ab2
=2a+b3
Hence, 8a3+b3+12a2b+6ab2=(2a+b)(2a+b)(2a+b)
Factorise each of the following:
(i) (ii)
(iii) (iv)
(v)