Let us consider 2x−y+2y−z+2z−x=x+y+z, therefore, the given problem can be rewritten as:
[(2x−y)+(2y−z)+(2z−x)]3−(2x−y)3−(2y−z)3−(2z−x)3
We know the identity: (a+b+c)3−a3−b3−c3=3(a+b)(b+c)(c+a)
Using the above identity taking a=(2x−y), b=(2y−z) and c=(2z−x), the equation
[(2x−y)+(2y−z)+(2z−x)]3−(2x−y)3−(2y−z)3−(2z−x)3 can be factorised as follows:
(2x−y)+(2y−z)+(2z−x)]3−(2x−y)3−(2y−z)3−(2z−x)3
=3((2x−y)+(2y−z))((2y−z)+(2z−x))((2x−y)+(2z−x))
=3(2x−y+2y−z)(2y−z+2z−x)(2x−y+2z−x)=3(2x+y−z)(2y+z−x)(x−y+2z)
Hence, (x+y+z)3−(2x−y)3−(2y−z)3−(2z−x)3=3(2x+y−z)(2y+z−x)(x−y+2z)