The correct option is
A (x+1)(x+2)(x+10)Let
f(x)=x3+13x2+32x+20
f(−1)=−1+13−32+20=0
Therefore, x+1 is the factor of f(x)
On dividing f(x) by x+1 we get x2+12x+20
Therefore, f(x)=(x+1)(x2+12x+20)
⟹f(x)=(x+1)(x2+10x+2x+20)
⟹f(x)=(x+1)(x(x+10)+2(x+10))
⟹f(x)=(x+1)(x+2)(x+10)