The correct option is
A (x2+(y−z)2)(x−y+z)(x+y−z)Consider the given expression
x4−(y−z)4 and solve it as shown below:
x4−(y−z)4⇒(x2)2−((y−z)2)2⇒(x2+(y−z)2)(x2−(y−z)2)(∵a2−b2=(a+b)(a−b))⇒(x2+(y−z)2)[(x−(y−z))(x+(y−z))]⇒(x2+(y−z)2)(x−y+z)(x+y−z)
Hence, the factorisation of x4−(y−z)4 is (x2+(y−z)2)(x−y+z)(x+y−z).