Factorize:
(3a-2b)3+(2b-5c)3+(5c-3a)3
Factorizing the given expression:
Let A=3a-2b,B=2b-5candC=5c-3a
A+B+C=3a-2b+2b-5c+5c-3aA+B+C=0
Using identity: A3+B3+C3-3ABC=(A+B+C)(A2+B2+C2-AB-BC-CA)
So, if A+B+C=0⇒A3+B3+C3=3ABC
(3a-2b)3+(2b-5c)3+(5c-3a)3=3(3a-2b)(2b-5c)(5c-3a)
Hence, after factorizing the expression we get, (3a-2b)3+(2b-5c)3+(5c-3a)3=3(3a-2b)(2b-5c)(5c-3a).
Factorize 3√3a3−b3−5√5c3−3√15abc
Factorize (a−2b)3−512b3
factorise;
1. (3a-2b)3 + (2b-5c)3+(5c-3a)3