Factorize a3−3a2b+3ab2−b3+8
We have, a3−3a2b+3ab2−b3+8
=(a3−3a2b+3ab2−b3)+8 [∵(a−b)3=a3−3a2b+3ab2−b3]
=(a−b)3+(2)3
=[(a−b)+2][(a−b)2−(a−b)×2+(2)2] [∵a3+b3=(a+b)(a2−ab+b2)]
=(a−b+2)(a2+b2−2ab−2a+2b+4) [∵(a−b)2=a2+b2−2ab]