Factorize 127x3−y3+125z3+5xyz
127x3−y3+125z3+5xyz=(13x)3+(−y)3+(5z)3−3×x3×x(−y)×5z=(13x−y+5z)[(13x)2+(−y)2+(5z)2−13x(−y)−(−y)×5z−5z×13x]=(13x−y+5z)(19x2+y2+25z2+13xy+4yz−53zx)