Factorize: m4−256.
(m-4)(m+4) (m2 +16)
(m-4)(m+4) (m2 -16)
(m-4)(m-4) (m2 +162)
(m+4)(m+4) (m2 +16)
m4−256=(m2)2–(16)2
=(m2–16)(m2+16)
Now, (m2+16) cannot be factorized further, but (m2–16) is factorizable again.
(m2–16)=(m)2–(4)2=(m−4)(m+4)
Therefore, (m4−256)=(m−4)(m+4)(m2+16).
Match the following:
A
B
1)
(m + 2n) (m − 2n)
a)
m2 − 16
2)
(3m + n) (3m − n)
b)
4m2 − 25n2
3)
(m + 4) (m − 4)
c)
4m2 + 25n2
4)
(2m + 5n) (2m − 5n)
d)
m2 − 4n2
e)
9m2 + n2
f)
9m2 − n2