Find a, b, c and d, if 3[abcd]=[a6−12d]+[4a+bc+d3]
3[abcd]=[a6−12d]+[4a+bc+d3]
[3a3b3c3d]=[a+46+a+b−1+c+d2d+3]
By comparing the corresponding elements of the matrices
3a = a + 4
2a = 4 → a = 2
3b = 6 +a + b
2b – a = 6
2b -2 = 6
2b = 8 → b = 4
3d = 2d + 3
d = 3
3c = -1 +c + d
2c = -1 + d
2c = -1 +3 →c = 1
Therefore a =2 , b = 4, c = 1, d = 3