Given f(x)=ax2+bx+c
∴f(0)=a.02+b.0+c=6
or 0.a+0.b+1.c=6 (i)
and f(2)=a(2)2+b(2)+c=11
⇒4.a+2.b+1.c=11 (ii)
and f(−3)=a(−3)2+b(−3)+c=6
⇒9.a−3.b+c=6 (iii)
Since (i), (ii) and (iii) are three equations in a, b, c solving these by Cramer's rule
∴D=∣∣
∣∣0014219−31∣∣
∣∣=1.(−12−18)=−30
D1=∣∣
∣∣60111216−31∣∣
∣∣=6(2+3)−0+1(−33−12) =−15
D2=∣∣
∣∣0614111961∣∣
∣∣ =0−6(4−9)+1(24−99) =20−75 =−45
D3=∣∣
∣∣00642119−36∣∣
∣∣ =6(−12−18) =−180
Hence by Cramer's rule
a=D1D=−15−30=12
b=D2D=−45−30=32
and c=D3D=−180−30=6
Hence a=12,b=32,c=6
∴f(x)=12x2+32x+6
and f(1)=12(1)2+32(1)+6 =8