The correct option is D None of these
Let, p(x)=2x4−9x3+5x2+3x−1
Since, 2+√3 and 2−√3 are zeros of p(x)
⇒(x−2−√3) and (x−2+√3) divides p(x) (∵Factor thm.)
⇒(x−2−√3)(x−2+√3) divides p(x)
⇒(x2−4x+1) divides p(x)
x2−4x+1)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯2x4−9x3+5x2+3x−1( 2x2−x−1
2−x4−+8x3+−2x2––––––––––––––––
−x3+3x2+3x−1
−+x3+−4x2−+x–––––––––––––––
−x2+4x−1
−+x2+−4x−+1––––––––––––––
0
Now, the other zeros can be obtained from on solving 2x2−x−1=0
⇒2x2−2x+x−1=0
⇒2x(x−1)+1(x−1)=0
⇒(2x+1)(x−1)=0
⇒x=−12,1
Hence, all the zeros are −12,1,2+√3,2−√3