wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find ddxsin34xcos85x

Open in App
Solution

ddx(sin34xcos85x)
Let u=sin34x and v=cos85x
ddx(sin34xcos85x)=ddx(uv)=udvdx+vdudx
=sin34xddx(cos85x)+cos85xddx(sin34x) …..(1)
Here ddx(cos85x)=dd(cos5x){(cos5x)8}d(cos5x)dx
=8(cos5x)7dd(5x)(cos(5x))=d(5x)dx
=8cos15x(sin5x)5dxdx [d(cosx)dx=sinx]
=40sin5xcos75x.
and ddx(sin34x)=dd(sin4x){(sin4x)3}.d(sin4x)dx
=3sin24xd(sin4x)d(4x)d(4x)dx
=3sin24xcos4x4dxdx [ddx(sinx)=cosx]
=12sin24xcos4x
From (1),
ddxsin34xcos85x=sin34x.(40sin5xcos75x)+cos85x(12sin24xcos4x)
=40sin34xsin5xcos75x+12cos85xsin24xcos4x
=4(10sin34xsin5xcos75x+3sin24xcos4xcos85x)
=4cos75xsin24x(3cos4xcos5x10sin4xsin5x)
=4cos75xsin24x(3cos(4x+5x)+cos(4x5x)210×cos(4x5x)cos(4x+5x)2)
=4cos75xsin24x(3cos9x+3cos(x)10cos(x)+cos9x2)
=2cos75xsin24x(4cos9x7cosx) [cos(x)=cosx]
ddx(sin34xcos85x)=2cos75xsin24x(4cos9x7cosx).

1203438_1355816_ans_8374be25c9cf4e989e61e6368e6f8ec6.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon