ddx(sin34xcos85x)
Let u=sin34x and v=cos85x
∴ddx(sin34xcos85x)=ddx(uv)=udvdx+vdudx
=sin34x⋅ddx(cos85x)+cos85xddx(sin34x) …..(1)
Here ddx(cos85x)=dd(cos5x){(cos5x)8}⋅d(cos5x)dx
=8(cos5x)7⋅dd(5x)(cos(5x))=d(5x)dx
=8cos−15x⋅(−sin5x)⋅5dxdx [∵d(cosx)dx=−sinx]
=−40sin5xcos75x.
and ddx(sin34x)=dd(sin4x){(sin4x)3}.d(sin4x)dx
=3sin24x⋅d(sin4x)d(4x)⋅d(4x)dx
=3sin24xcos4x4dxdx [∵ddx(sinx)=cosx]
=12sin24xcos4x
From (1),
ddxsin34xcos85x=sin34x.(−40sin5xcos75x)+cos85x(12sin24xcos4x)
=−40sin34xsin5xcos75x+12cos85xsin24xcos4x
=4(−10sin34xsin5xcos75x+3sin24xcos4xcos85x)
=4cos75x⋅sin24x(3cos4xcos5x−10sin4xsin5x)
=4cos75xsin24x(3cos(4x+5x)+cos(4x−5x)2−10×cos(4x−5x)−cos(4x+5x)2)
=4cos75xsin24x(3cos9x+3cos(−x)−10cos(−x)+cos9x2)
=2cos75xsin24x(4cos9x−7cosx) [∵cos(−x)=cosx]
∴ddx(sin34xcos85x)=2cos75xsin24x(4cos9x−7cosx).